/* complex.c */ /* ** This file is placed into the public domain by its author, ** Carey Bloodworth (Carey@Bloodworth.org) on July 16, 2001 ** ** This multiplication demo is not designed for high performance. ** It's a tutorial program designed to be used with the information ** on my web site at www.Bloodworth.org */ /* ** This file demonstrates a very basic FFT mul using a plain ** ordinary complex FFT. Inefficient. ** ** To compile this using GCC: ** gcc main.c complex.c -o complex.exe */ #include#include #include #include #include typedef short int Short; typedef struct {double r,i;} Cmplx; #define CmplxAdd(_S,_A,_B) {_S.r=_A.r+_B.r;_S.i=_A.i+_B.i;} #define CmplxConj(_V) {_V.i=-_V.i;} #define CmplxConj2(_A,_B) {_A.r=_B.r;_A.i=-_B.i;} #define CmplxDivV(_A,_v) {_A.r/=(_v);_A.i/=(_v);} #define CmplxImag(_A) _A.i #define CmplxMul(_P,_A,_B) \ {Cmplx _R; \ _R.r=(_A.r*_B.r) - (_A.i*_B.i); \ _R.i=(_A.i*_B.r) + (_A.r*_B.i); \ _P=_R; \ } #define CmplxMulV(_A,_v) {_A.r*=(_v);_A.i*=(_v);} #define CmplxReal(_A) _A.r #define CmplxSet(_S,_A,_B) {_S.r=_A;_S.i=_B;} #define CmplxSub(D,_A,_B) {D.r=_A.r-_B.r;D.i=_A.i-_B.i;} #define CalcFFTLen(_NumLen) ((((_NumLen)*BASE_DIG)*2)/BASE_DIG) /* NumLen*BaseDig*ZeroPadding/Dig_Per_FFT */ extern double MaxFFTError; static Cmplx *FFTNum1=NULL, *FFTNum2=NULL; static double BASE; static int BASE_DIG; /* A Konstant. Compiler might not have this. */ double K_PI_ =3.14159265358979323846L; /* ** I like to do the trig stuff as macros. ** It lets me seperate that stuff from the regular FFT stuff. ** It also lets me play with different ways to compute the trig. */ #if 1 #define TRIG_VARS Cmplx PRoot,Root; #define INIT_TRIG(LENGTH,DIR) \ PRoot.r=1.0;PRoot.i=0.0; \ Root.r=sin(K_PI_/((LENGTH)*2)); \ Root.r=-2.0*Root.r*Root.r; \ Root.i=sin(K_PI_/(LENGTH))*(DIR); #define NEXT_TRIG_POW \ {Cmplx Temp; \ Temp=PRoot; \ CmplxMul(PRoot,PRoot,Root); \ CmplxAdd(PRoot,PRoot,Temp); \ } #endif #if 0 #define TRIG_VARS \ size_t TLen,TNdx;int TDir; \ Cmplx PRoot,Root; #define INIT_TRIG(LENGTH,DIR) \ TNdx=0;TLen=LENGTH;TDir=(DIR); \ PRoot.r=1.0;PRoot.i=0.0; \ Root.r=sin(K_PI_/((LENGTH)*2.0)); \ Root.r=-2.0*Root.r*Root.r; \ Root.i=sin(K_PI_/(LENGTH))*(DIR); #define NEXT_TRIG_POW \ if (((++TNdx)&7)==0) \ {double Angle; \ Angle=(K_PI_*(TNdx))/TLen; \ PRoot.r=sin(Angle*0.5); \ PRoot.r=1.0-2.0*PRoot.r*PRoot.r;\ PRoot.i=sin(Angle)*(TDir); \ } \ else \ {Cmplx Temp; \ Temp=PRoot; \ CmplxMul(PRoot,PRoot,Root); \ CmplxAdd(PRoot,PRoot,Temp); \ } #endif #if 0 #define TRIG_VARS \ double Angle; \ size_t TLen,TNdx;int TDir; \ Cmplx PRoot; #define INIT_TRIG(LENGTH,DIR) \ #define NEXT_TRIG_POW \ Angle=(K_PI_*(++TNdx))/TLen; \ PRoot.r=sin(Angle*0.5); \ PRoot.r=1.0-2.0*PRoot.r*PRoot.r; \ PRoot.i=sin(Angle)*(TDir); #endif int Log2(int Num) {int x=-1; if (Num==0) return 0; while (Num) {x++;Num/=2;} return x; } static int IsPow2(int Num) { return ((Num & -Num) == Num); } #if 0 /* ** Reorder complex data array by bit reversal rule. */ static void FFTReOrder(Cmplx *Data, int Len) {int Index,xednI,k; xednI = 0; for (Index = 0;Index < Len;Index++) { if (xednI > Index) {Cmplx Temp; Temp=Data[xednI]; Data[xednI]=Data[Index]; Data[Index]=Temp; } k=Len/2; while ((k <= xednI) && (k >=1)) {xednI-=k;k/=2;} xednI+=k; } } #endif /* ** Example of using both DiF and DiT style transforms ** without any scrambling. */ static void FFT_T(Cmplx *Data, int Len,int Dir) /* Generic Decimation in Time */ { int Step, HalfStep; int b; TRIG_VARS; /* FFTReOrder(Data, Len);*/ Step = 1; while (Step < Len) { Step *= 2; HalfStep = Step/2; INIT_TRIG(HalfStep,Dir); for (b = 0; b < HalfStep; b++) {int L,R; for (L=b;L < Len; L+=Step) {Cmplx TRight,TLeft; R=L+HalfStep; TLeft=Data[L];TRight=Data[R]; CmplxMul(TRight,TRight,PRoot); CmplxAdd(Data[L],TLeft,TRight); CmplxSub(Data[R],TLeft,TRight); } NEXT_TRIG_POW; } } } static void FFT_F(Cmplx *Data, int Len,int Dir) /* Generic Decimation in Frequency */ { int Step, HalfStep; int b; TRIG_VARS; Step = Len; while (Step > 1) { HalfStep = Step/2; INIT_TRIG(HalfStep,Dir); for (b = 0; b < HalfStep; b++) {int L,R; for (L=b;L < Len; L+=Step) {Cmplx TRight,TLeft; R=L+HalfStep; TLeft=Data[L];TRight=Data[R]; CmplxAdd(Data[L],TLeft,TRight); CmplxSub(Data[R],TLeft,TRight); CmplxMul(Data[R],Data[R],PRoot); } NEXT_TRIG_POW; } Step /= 2; } /* FFTReOrder(Data, Len);*/ } void FFTMul(Short * Prod, Short * Num1, Short * Num2,int Len) /* ** Do a plain FFT based multiply. ** Data is big-endian */ { int x, FFTLen = CalcFFTLen(Len); double Carry, RawPyramid, Pyramid, PyramidError; double inv; /* ** This is a radix-2 FFT, so the length has to be a power of two. */ if (!IsPow2(Len)) {printf("FFT length is not a power of two.\n");exit(0);} for (x = 0; x < FFTLen; x++) CmplxSet(FFTNum1[x],0,0); for (x = 0; x < Len; x++) CmplxSet(FFTNum1[x],Num1[Len - x - 1],0); /* Put our data into FFT in little endian format & zero pad */ FFT_F(FFTNum1, FFTLen, 1); /* ** If we are squaring a number, we can save the cost ** of a FFT. */ if (Num1 == Num2) { /* ** Now do the convolution */ for (x = 0; x < FFTLen; x++) CmplxMul(FFTNum1[x],FFTNum1[x],FFTNum1[x]); } else { for (x = 0; x < FFTLen; x++) CmplxSet(FFTNum2[x],0,0); for (x = 0; x < Len; x++) CmplxSet(FFTNum2[x],Num2[Len - x - 1],0); FFT_F(FFTNum2, FFTLen, 1); /* ** Now do the convolution */ for (x = 0; x < FFTLen; x++) CmplxMul(FFTNum1[x],FFTNum1[x],FFTNum2[x]); } /* ** Now do an Inverse FFT */ FFT_T(FFTNum1, FFTLen, -1); /* ** Now round the results, and release our carries, and store ** the results in the 'prod' array. Also do the normalization ** we didn't do in the FFT. And, as usual, it's slightly faster ** to multiply by the reciprocal, instead of doing the division. */ Carry = 0.0; MaxFFTError=0.0; inv = 1.0 / FFTLen; for (x = FFTLen; x > 0; x--) { RawPyramid = FFTNum1[FFTLen - x].r * inv + Carry; Pyramid = floor(RawPyramid + 0.5); /* floor() is a very slow function on the x86/x87 */ PyramidError = fabs(RawPyramid - Pyramid); if (PyramidError > MaxFFTError) { MaxFFTError = PyramidError; /* printf("New Max FFT Error=%f\n",MaxFFTError);*/ } Carry = floor(Pyramid / BASE); Prod[x - 1] = Pyramid - Carry * BASE; } } void InitFFT(unsigned long int Len,int Base,int BaseDig) {int Bytes; BASE=Base; BASE_DIG=BaseDig; Bytes=sizeof(Cmplx)*CalcFFTLen(Len); if (BaseDig > 4) { printf("Error: The fft is slightly hardwired for <= 4 digits in the base.\n"); exit(0); } FFTNum1=(Cmplx*)malloc(Bytes); FFTNum2=(Cmplx*)malloc(Bytes); if ((FFTNum1==NULL) || (FFTNum2==NULL)) { printf("Unable to allocate memory for FFTNum.\n"); printf("Len=%d Bytes=%d\n",(int)Len,(int)Bytes); exit(0); } } void DeInitFFT(unsigned long int Len) { free(FFTNum1);free(FFTNum2); }