/*
MPNTT31.C
*/
/*
** This file is placed into the public domain by its author,
** Carey Bloodworth (Carey@Bloodworth.org) on July 16, 2001
**
** This multiplication demo is not designed for high performance.
** It's a tutorial program designed to be used with the information
** on my web site at www.Bloodworth.org
*/
/*
** This file demonstrates a very basic multi-prime NTT multiply.
** It uses up to four 31 bit primes. It puts 16 decimals per
** NTT element and can theoretically multiply numbers up to
** 16 million decimals. (Although the program certainly isn't
** optimized for that large of tests.)
**
** The example program (main.c) might have 1, 2, or 4 decimals
** per Short, so I have to be flexible. We always put 16 decimals
** into each multi-prime NTT element, though.
**
** The program uses very generic code, so it should work with
** every compiler.
**
** To compile this using GCC:
** gcc main.c mpntt31.c -o mpntt31.exe
*/
#include
#include
#include
#include
#include
#define KNUTH_CRT 1
/* Knuth style CRT requires primes to be in ascending order */
/* Non-Knuth can do primes in any order */
/* Comment out to use other style. */
typedef unsigned short int UINT16;
typedef unsigned long int UINT32;
typedef signed short int INT16;
typedef signed long int INT32;
typedef UINT32 ModInt;
typedef short int Short;
static int BASE;
static int BASE_DIG;
/* These are set *by design* of the multi-prime NTT */
#define DigitsPerMod 16
#define NPrimes 4
#define DigitsPerPrime (DigitsPerMod/NPrimes)
#define ShortsPerMod (DigitsPerMod/BASE_DIG)
/*
** Must be an even multiple. Can't have 3 digits per short, for example.
** Not a good idea to have a div in there, but in a real program, this
** would be hard wired. This example program might have 1, 2, or 4
** decimals per short and I have to allow for that.
*/
#include "crt.h"
/*#define CalcNTTLen(_Len) ((_Len*2*BASE_DIG)/DigitsPerMod)*/
#define CalcNTTLen(_Len) ((_Len*2)/ShortsPerMod)
typedef struct {ModInt Prime,PrimvRoot,MulInv;double RPrime;} ConstList;
ConstList Consts[NPrimes];
ModInt Prime,PrimvRoot,MulInv;
double RPrime;
static ModInt *NTTNum1=NULL, *NTTNum2=NULL;
#ifdef KNUTH_CRT
ModInt Inverses[NPrimes][NPrimes];
#else
ModInt Inverses[NPrimes];
#endif
CRTNum PProds[NPrimes+1][CRT_LEN];
ModInt PrimeList[NPrimes]=
{
1811939329, /* Bits= 30.73 */
2013265921, /* Bits= 30.89 */
2113929217, /* Bits= 30.96 */
2130706433 /* Bits= 30.97 */
}; /* Total Bits=123.55 */
/* The primative roots of unity for the primes. */
ModInt PrimvRootList[NPrimes]={13,31,5,3};
#if 0
/* For 31 & 32 bit primes, you have a practical choice of: */
1811939329, /* Bits= 30.73 pr=13*/
2013265921, /* Bits= 30.89 pr=31*/
2113929217, /* Bits= 30.96 pr=5 */
2130706433, /* Bits= 30.97 pr=3 */
/* Warning: 32 bit primes. ModMul limited to 31 */
2885681153UL, /* Bits= 31.42 pr=3 */
3942645761UL, /* Bits= 31.87 pr=3 */
4076863489UL, /* Bits= 31.92 pr=7 */
4106223617UL, /* Bits= 31.93 pr=3 */
4194304001UL, /* Bits= 31.96 pr=3 */
4253024257UL, /* Bits= 31.98 pr=5 */
#endif
ModInt
ModMul(ModInt a, ModInt b)
/* Limited to 31 bits. */
{INT32 rem;
rem = a * b;
rem = rem - Prime * ((ModInt) floor(0.5+RPrime * ((double) a) * ((double) b)));
if (rem < 0) rem +=Prime;
return rem;
}
ModInt ModAdd(ModInt a, ModInt b)
{double x;
x=a;
x+=b;
if (x >= Prime) x-=Prime;
return (ModInt)x;
}
ModInt ModSub(ModInt a, ModInt b)
{double r;
r=a;
r-=b;
if (r < 0) r+=Prime;
return (ModInt)r;
}
ModInt
ModPow(ModInt Base,UINT32 Expon)
{ModInt prod,b;
if (Expon<=0) return 1;
b=Base;
while (!(Expon&1)) {b=ModMul(b,b);Expon>>=1;}
prod=b;
while (Expon>>=1)
{
b=ModMul(b,b);
if (Expon&1) prod=ModMul(prod,b);
}
return prod;
}
ModInt
FindInverse(ModInt Num)
{
return ModPow(Num,Prime-2);
}
static void
NTTReorder(ModInt *Data, int Len)
/*
** Standard FFT/NTT data scrambling.
*/
{int Index,xednI,k;
xednI = 0;
for (Index = 0;Index < Len;Index++)
{
if (xednI > Index)
{ModInt Temp;
Temp=Data[xednI];
Data[xednI]=Data[Index];
Data[Index]=Temp;
}
/* Bit reversal */
k=Len/2;
while ((k <= xednI) && (k >=1)) {xednI-=k;k/=2;}
xednI+=k;
}
}
void NTT(ModInt *Data, int Len, int Dir)
/* A simple minded, generic transform */
{int j,step,halfstep;
int index,index2;
ModInt u,w,temp;
NTTReorder(Data,Len);
step=1;
while (step < Len)
{
halfstep=step;
step*=2;
u=1;
if (Dir > 0) w=ModPow(PrimvRoot,Prime-1-((Prime-1)/step));
else w=ModPow(PrimvRoot,(Prime-1)/step);
for (j=0;j 1) || (BASE > 10))
{
printf("Error: The ntt is hardwired for just 1 digit in the base.\n");
printf("In 'main.c' please set BASE to 10 and BASE_DIG to 1\n");
exit(0);
}
#endif
NTTNum1=(ModInt*)malloc(Bytes);
NTTNum2=(ModInt*)malloc(Bytes);
if ((NTTNum1==NULL) || (NTTNum2==NULL))
{
printf("Unable to allocate memory for NTTNum.\n");
printf("Len=%d Bytes=%d\n",(int)Len,(int)Bytes);
exit(0);
}
/* Setup our primes */
for (x=0;x